Topological	definitions

Bisequentiality and $\alpha_{\mathbf{3}}$ in ad families $_{0000}$

On some questions of Arhangel'skii 000

Fréchet-like properties and ad families

César Corral (joint with Michael Hrušák)

UNAM-UMSNH

Hejnice, January 2020

Fréchet, α_i and strong Fréchet properties

A point $x \in X$ is a Fréchet point if whenever $x \in \overline{A}$ there is a sequence $\{x_n : n \in \omega\} \subseteq A$ such that $x_n \to x$.

Definition (Arhangel'skii, 79)

A point $x \in X$ is an α_i -point (i = 1, 2, 3, 4) if given a family $\{S_n : n \in \omega\}$ of sequences converging to x, there is a sequence $S \to x$ (we identify a convergent sequence with its range) such that:

$$(\alpha_1) \ S \setminus S_n$$
 is finite for all $n \in \omega$,

 (α_2) $S \cap S_n \neq \emptyset$ for all $n \in \omega$,

 (α_3) $|S \cap S_n| = \omega$ for infinitely many $n \in \omega$,

 (α_4) $S \cap S_n \neq \emptyset$ for infinitely many $n \in \omega$.

Then a space X is Fréchet (resp. α_i) if every point $x \in X$ is Fréchet (resp. α_i).

Fréchet, α_i and strong Fréchet properties

A point $x \in X$ is a Fréchet point if whenever $x \in \overline{A}$ there is a sequence $\{x_n : n \in \omega\} \subseteq A$ such that $x_n \to x$.

Definition (Arhangel'skii, 79)

A point $x \in X$ is an α_i -point (i = 1, 2, 3, 4) if given a family $\{S_n : n \in \omega\}$ of sequences converging to x, there is a sequence $S \to x$ (we identify a convergent sequence with its range) such that:

$$\begin{array}{ll} (\alpha_1) & S \setminus S_n \text{ is finite for all } n \in \omega, \\ (\alpha_2) & S \cap S_n \neq \emptyset \text{ for all } n \in \omega, \\ (\alpha_3) & |S \cap S_n| = \omega \text{ for infinitely many } n \in \omega, \\ (\alpha_4) & S \cap S_n \neq \emptyset \text{ for infinitely many } n \in \omega. \end{array}$$

Then a space X is Fréchet (resp. α_i) if every point $x \in X$ is Fréchet (resp. α_i).

Fréchet, α_i and strong Fréchet properties

A point $x \in X$ is a Fréchet point if whenever $x \in \overline{A}$ there is a sequence $\{x_n : n \in \omega\} \subseteq A$ such that $x_n \to x$.

Definition (Arhangel'skii, 79)

A point $x \in X$ is an α_i -point (i = 1, 2, 3, 4) if given a family $\{S_n : n \in \omega\}$ of sequences converging to x, there is a sequence $S \to x$ (we identify a convergent sequence with its range) such that:

$$\begin{array}{ll} (\alpha_1) & S \setminus S_n \text{ is finite for all } n \in \omega, \\ (\alpha_2) & S \cap S_n \neq \emptyset \text{ for all } n \in \omega, \\ (\alpha_3) & |S \cap S_n| = \omega \text{ for infinitely many } n \in \omega, \\ (\alpha_4) & S \cap S_n \neq \emptyset \text{ for infinitely many } n \in \omega. \end{array}$$

Then a space X is Fréchet (resp. α_i) if every point $x \in X$ is Fréchet (resp. α_i).

Fréchet, α_i and strong Fréchet properties

Definition (Arhangel'skii, 79)

A space X is absolutely Fréchet if in some Hausdorff compactification bX of X, every point $x \in X$ is a Fréchet point.

Given a family $\mathcal{A} \subseteq \mathcal{P}(X)$ we will say that $x \in \overline{\mathcal{A}}$ (x clusters at \mathcal{A}) if $x \in \overline{\mathcal{A}}$ for every $A \in \mathcal{A}$. A filter base \mathcal{G} converges to a point $x \in X$ if for every neighborhood V of x, there is a $G \in \mathcal{G}$ such that $G \subseteq V$. We then write $\mathcal{G} \to x$.

Definition (E. Michael, 72)

Fréchet, α_i and strong Fréchet properties

Definition (Arhangel'skii, 79)

A space X is absolutely Fréchet if in some Hausdorff compactification bX of X, every point $x \in X$ is a Fréchet point.

Given a family $\mathcal{A} \subseteq \mathcal{P}(X)$ we will say that $x \in \overline{\mathcal{A}}$ (x clusters at \mathcal{A}) if $x \in \overline{\mathcal{A}}$ for every $A \in \mathcal{A}$. A filter base \mathcal{G} converges to a point $x \in X$ if for every neighborhood V of x, there is a $G \in \mathcal{G}$ such that $G \subseteq V$. We then write $\mathcal{G} \to x$.

Definition (E. Michael, 72)

Fréchet, α_i and strong Fréchet properties

Definition (Arhangel'skii, 79)

A space X is absolutely Fréchet if in some Hausdorff compactification bX of X, every point $x \in X$ is a Fréchet point.

Given a family $\mathcal{A} \subseteq \mathcal{P}(X)$ we will say that $x \in \overline{\mathcal{A}}$ (x clusters at \mathcal{A}) if $x \in \overline{\mathcal{A}}$ for every $A \in \mathcal{A}$. A filter base \mathcal{G} converges to a point $x \in X$ if for every neighborhood V of x, there is a $G \in \mathcal{G}$ such that $G \subseteq V$. We then write $\mathcal{G} \to x$.

Definition (E. Michael, 72)

Fréchet, α_i and strong Fréchet properties

Definition (Arhangel'skii, 79)

A space X is absolutely Fréchet if in some Hausdorff compactification bX of X, every point $x \in X$ is a Fréchet point.

Given a family $\mathcal{A} \subseteq \mathcal{P}(X)$ we will say that $x \in \overline{\mathcal{A}}$ (x clusters at \mathcal{A}) if $x \in \overline{\mathcal{A}}$ for every $A \in \mathcal{A}$. A filter base \mathcal{G} converges to a point $x \in X$ if for every neighborhood V of x, there is a $G \in \mathcal{G}$ such that $G \subseteq V$. We then write $\mathcal{G} \to x$.

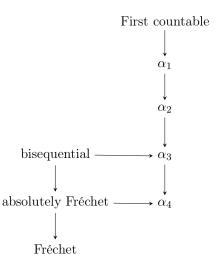
Definition (E. Michael, 72)

Bisequentiality and $\alpha_{\mathbf{3}}$ in ad families $_{0000}$

On some questions of Arhangel'skii 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Relationship between strong Fréchet and α_1 properties



Impact of these properties in the product of Fréchet spaces

- The product of a countably compact space with an α₃-FU space is Fréchet.
- $X \times [0,1]$ is Fréchet iff X is α_4 -FU.
- If X is absolutely Fréchet and Y is first countable then $X \times Y$ is absolutely Fréchet.
- The product of an absolutely Fréchet and a bisequential space is absolutely Fréchet.

Topological definitions 0000●	Bisequentiality and $lpha_{3}$ in ad families	On some questions of Arhangel'skii 000

Some results

- (Arhangel'skii, 79) There is a Fréchet space which is not α_4 .
- (Arhangel'skii, 79) There is a non-bisequential space X such that it is α_4 -FU.
- (Simon, 80) There is an α_4 space which is not α_3 .
- (Nyikos, 89) There is an α_3 space which is not α_2 .
- (Nyikos, 90's) There is an α_2 space that is not first countable.
- (Dow, 90's) It is consistent that all countable α_2 spaces are α_1 .
- (Dow & Steprans, 90's) It is consistent that all α_1 spaces are first countable.

Topological definitions 0000●	Bisequentiality and α_{3} in ad families	On some questions of Arhangel'skii 000
Some results		

- (Arhangel'skii, 79) There is a Fréchet space which is not α_4 .
- (Arhangel'skii, 79) There is a non-bisequential space X such that it is α_4 -FU.
- (Simon, 80) There is an α_4 space which is not α_3 .
- (Nyikos, 89) There is an α_3 space which is not α_2 .
- (Nyikos, 90's) There is an α_2 space that is not first countable.
- (Dow, 90's) It is consistent that all countable α_2 spaces are α_1 .
- (Dow & Steprans, 90's) It is consistent that all α_1 spaces are first countable.

Topological definitions	Bisequentiality and α_3 in ad families 0000	On some questions of Arhangel'skii
Some results		

- (Arhangel'skii, 79) There is a Fréchet space which is not α_4 .
- (Arhangel'skii, 79) There is a non-bisequential space X such that it is α_4 -FU.
- (Simon, 80) There is an α_4 space which is not α_3 .
- (Nyikos, 89) There is an α_3 space which is not α_2 .
- (Nyikos, 90's) There is an α_2 space that is not first countable.
- (Dow, 90's) It is consistent that all countable α_2 spaces are α_1 .
- (Dow & Steprans, 90's) It is consistent that all α_1 spaces are first countable.

Topological definitions	Bisequentiality and α_3 in ad families 0000	On some questions of Arhangel'skii
Some results		

- (Arhangel'skii, 79) There is a Fréchet space which is not α_4 .
- (Arhangel'skii, 79) There is a non-bisequential space X such that it is α_4 -FU.
- (Simon, 80) There is an α_4 space which is not α_3 .
- (Nyikos, 89) There is an α_3 space which is not α_2 .
- (Nyikos, 90's) There is an α_2 space that is not first countable.
- (Dow, 90's) It is consistent that all countable α_2 spaces are α_1 .
- (Dow & Steprans, 90's) It is consistent that all α_1 spaces are first countable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Topological definitions 0000●	Bisequentiality and α_3 in ad families 0000	On some questions of Arhangel'skii
Some results		

- (Arhangel'skii, 79) There is a Fréchet space which is not α_4 .
- (Arhangel'skii, 79) There is a non-bisequential space X such that it is α_4 -FU.
- (Simon, 80) There is an α_4 space which is not α_3 .
- (Nyikos, 89) There is an α_3 space which is not α_2 .
- (Nyikos, 90's) There is an α_2 space that is not first countable.
- (Dow, 90's) It is consistent that all countable α_2 spaces are α_1 .
- (Dow & Steprans, 90's) It is consistent that all α_1 spaces are first countable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Topological definitions 0000●	Bisequentiality and α_3 in ad families 0000	On some questions of Arhangel'skii
Some results		

- (Arhangel'skii, 79) There is a Fréchet space which is not α_4 .
- (Arhangel'skii, 79) There is a non-bisequential space X such that it is α_4 -FU.
- (Simon, 80) There is an α_4 space which is not α_3 .
- (Nyikos, 89) There is an α_3 space which is not α_2 .
- (Nyikos, 90's) There is an α_2 space that is not first countable.
- (Dow, 90's) It is consistent that all countable α_2 spaces are α_1 .
- (Dow & Steprans, 90's) It is consistent that all α_1 spaces are first countable.

Topological definitions 0000●	Bisequentiality and α_3 in ad families 0000	On some questions of Arhangel'skii
Some results		

- - (Arhangel'skii, 79) There is a Fréchet space which is not α_4 .
 - (Arhangel'skii, 79) There is a non-bisequential space X such that it is α_4 -FU.
 - (Simon, 80) There is an α_4 space which is not α_3 .
 - (Nyikos, 89) There is an α_3 space which is not α_2 .
 - (Nyikos, 90's) There is an α_2 space that is not first countable.
 - (Dow, 90's) It is consistent that all countable α_2 spaces are α_1 .
 - (Dow & Steprans, 90's) It is consistent that all α_1 spaces are first countable.

ppological definitions	Bisequentiality and α_3 in ad families $\bullet 000$	On some questions of Arhangel'skii 000

AD spaces

A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is an almost disjoint (ad) family if $|\mathcal{A} \cap \mathcal{B}| < \omega$ for every $\mathcal{A}, \mathcal{B} \in \mathcal{A}$. \mathcal{A} is maximal almost disjoint (mad) if it is ad and maximal with respect to this property. Given an ad family \mathcal{A} , the ad space generated by \mathcal{A} is the subspace $\omega \cup \{\infty\}$ of the one-point compactification of $\Psi(\mathcal{A})$. We will say that an ad family \mathcal{A} satisfies a topological property P if its ad space does.

Definition

An ad family \mathcal{A} is hereditarily α_3 if \mathcal{B} is α_3 for every $\mathcal{B} \subseteq \mathcal{A}$

Question (Gruenhage, 06)

Topological definitions	Bisequentiality and α_3 in ad families $\bullet 000$	On some questions of Arhangel'skii 000

AD spaces

A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is an almost disjoint (ad) family if $|A \cap B| < \omega$ for every $A, B \in \mathcal{A}$. \mathcal{A} is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.

Given an ad family \mathcal{A} , the ad space generated by \mathcal{A} is the subspace $\omega \cup \{\infty\}$ of the one-point compactification of $\Psi(\mathcal{A})$. We will say that an ad family \mathcal{A} satisfies a topological property P if its ad space does.

Definition

An ad family \mathcal{A} is hereditarily α_3 if \mathcal{B} is α_3 for every $\mathcal{B} \subseteq \mathcal{A}$.

Question (Gruenhage, 06)

Topological definitions	Bisequentiality and α_3 in ad families $\bullet 000$	On some questions of Arhangel'skii
AD spaces		

Definition

An ad family \mathcal{A} is hereditarily α_3 if \mathcal{B} is α_3 for every $\mathcal{B} \subseteq \mathcal{A}$

Question (Gruenhage, 06)

Topological definitions	Bisequentiality and α_3 in ad families $\bullet 000$	On some questions of Arhangel'skii
AD spaces		

Definition

An ad family \mathcal{A} is hereditarily α_3 if \mathcal{B} is α_3 for every $\mathcal{B} \subseteq \mathcal{A}$

Question (Gruenhage, 06)

Topological definitions	Bisequentiality and α_3 in ad families $\bullet 000$	On some questions of Arhangel'skii
AD spaces		

Definition

An ad family \mathcal{A} is hereditarily α_3 if \mathcal{B} is α_3 for every $\mathcal{B} \subseteq \mathcal{A}$.

Question (Gruenhage, 06)

Topological definitions	Bisequentiality and α_{3} in ad families 0	On some questions of Arhangel'skii 000
AD spaces		

Definition

An ad family \mathcal{A} is hereditarily α_3 if \mathcal{B} is α_3 for every $\mathcal{B} \subseteq \mathcal{A}$.

Question (Gruenhage, 06)

Topological definitions	Bisequentiality and α_3 in ad families 0000	On some questions of Arhangel'skii 000

Some results

- (Nyikos, 09) Under b = c, there is a Fréchet ad family which is not α₃. The example consists of graph of functions on ω × ω, so...

Question (Nyikos, 09)

Is there a non-bisequential ad family consisting of functions such that it is $\alpha_{\rm 3}\text{-}{\rm FU}?$

Theorem (C.-Hrušák)

Topological definitions	Bisequentiality and α_{3} in ad families $0 \bullet 00$	On some questions of Arhangel'skii
Some results		

- (Nyikos, 09) Under b = c, there is a Fréchet ad family which is not α₃. The example consists of graph of functions on ω × ω, so...

Question (Nyikos, 09)

Is there a non-bisequential ad family consisting of functions such that it is $\alpha_{\rm 3}\text{-}{\rm FU}?$

Theorem (C.-Hrušák)

Topological definitions	Bisequentiality and α_3 in ad families 0000	On some questions of Arhange l'skii 000
Some results		

- (Nyikos, 09) Under b = c, there is a Fréchet ad family which is not α₃. The example consists of graph of functions on ω × ω, so...

Question (Nyikos, 09)

Is there a non-bisequential ad family consisting of functions such that it is $\alpha_{\rm 3}\text{-}{\rm FU?}$

Theorem (C.-Hrušák)

Topological definitions	Bisequentiality and α_3 in ad families 0000	On some questions of Arhange l'skii 000
Some results		

- (Nyikos, 09) Under b = c, there is a Fréchet ad family which is not α₃. The example consists of graph of functions on ω × ω, so...

Question (Nyikos, 09)

Is there a non-bisequential ad family consisting of functions such that it is $\alpha_{\rm 3}\text{-}{\rm FU?}$

Theorem (C.-Hrušák)

Topological definitions	Bisequentiality and α_{3} in ad families	On some questions of Arhangel's
	0000	

kii

Theorem (C.-Hrušák)

 $\mathfrak{b} = \mathfrak{c}$. There exists an hereditarily α_3 -FU almost disjoint family (consisting of partial functions) which is not bisequential.

Question

Can the above family consist of total functions?

Since $\mathfrak{b} \leq \operatorname{non}(\mathcal{M})$, it follows that under $\mathfrak{b} = \mathfrak{c}$ the tree concepts are different.

Topological definitions	Bisequentiality and α_3 in ad families	On some questions of Arhangel'ski
	0000	

Theorem (C.-Hrušák)

 $\mathfrak{b} = \mathfrak{c}$. There exists an hereditarily α_3 -FU almost disjoint family (consisting of partial functions) which is not bisequential.

Question

Can the above family consist of total functions?

Since $\mathfrak{b} \leq \text{non}(\mathcal{M})$, it follows that under $\mathfrak{b} = \mathfrak{c}$ the tree concepts are different.

Topological definitions	Bisequentiality and α_{3} in ad families	On some questions of Arhangel'skii
	0000	

Theorem (C.-Hrušák)

 $\mathfrak{b} = \mathfrak{c}$. There exists an hereditarily α_3 -FU almost disjoint family (consisting of partial functions) which is not bisequential.

Question

Can the above family consist of total functions?

Since $\mathfrak{b} \leq non(\mathcal{M})$, it follows that under $\mathfrak{b} = \mathfrak{c}$ the tree concepts are different.

Bisequentiality and $\alpha_{\mathbf{3}}$ in ad families 0000

On some questions of Arhangel'skii 000

Other constructions

Theorem (C.-Hrušák)

 $(\mathfrak{s} \leq \mathfrak{b})$ There is an α_3 -FU not hereditarily α_3 ad family.

Corollary

 $(\mathfrak{c} \leq leph_2)$ There is an $lpha_3$ -FU non-bisequential ad family.

Theorem (C.-Hrušák)

◊(b) ⇒ There is an α₂-FU not her. α₃ ad family of size ω₁.
◊(b) ⇒ There is an her. α₃-FU not bsq. ad family of size ω₁.

Bisequentiality and $\alpha_{\mathbf{3}}$ in ad families 0000

On some questions of Arhangel'skii 000

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Other constructions

Theorem (C.-Hrušák)

 $(\mathfrak{s} \leq \mathfrak{b})$ There is an α_3 -FU not hereditarily α_3 ad family.

Corollary

 $(\mathfrak{c} \leq leph_2)$ There is an $lpha_3$ -FU non-bisequential ad family.

Theorem (C.-Hrušák)

• $\Diamond(\mathfrak{b}) \Rightarrow$ There is an α_2 -FU not her. α_3 ad family of size ω_1 .

• $\Diamond(\mathfrak{b}) \Rightarrow$ There is an her. α_3 -FU not bsq. ad family of size ω_1 .

Bisequentiality and $\alpha_{\mathbf{3}}$ in ad families 0000

On some questions of Arhangel'skii 000

Other constructions

Theorem (C.-Hrušák)

 $(\mathfrak{s} \leq \mathfrak{b})$ There is an α_3 -FU not hereditarily α_3 ad family.

Corollary

 $(\mathfrak{c} \leq \aleph_2)$ There is an α_3 -FU non-bisequential ad family.

Theorem (C.-Hrušák)

- $\Diamond(\mathfrak{b}) \Rightarrow$ There is an α_2 -FU not her. α_3 ad family of size ω_1 .
- $\diamondsuit(\mathfrak{b}) \Rightarrow$ There is an her. α_3 -FU not bsq. ad family of size ω_1 .

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) α₁-FU space which is not bisequential?

A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_0}<2^{\aleph_1}.$

Theorem (C.-Hrušák)

CH. There is a countable α_1 and absolutely Fréchet space which is not bisequential.

Theorem

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) α₁-FU space which is not bisequential?

A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_0}<2^{\aleph_1}.$

Theorem (C.-Hrušák)

CH. There is a countable α_1 and absolutely Fréchet space which is not bisequential.

Theorem

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) α₁-FU space which is not bisequential?

A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_0}<2^{\aleph_1}.$

Theorem (C.-Hrušák)

CH. There is a countable α_1 and absolutely Fréchet space which is not bisequential.

Theorem

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) α₁-FU space which is not bisequential?

A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_0}<2^{\aleph_1}.$

Theorem (C.-Hrušák)

CH. There is a countable α_1 and absolutely Fréchet space which is not bisequential.

Theorem

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) α₁-FU space which is not bisequential?

A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_0}<2^{\aleph_1}.$

Theorem (C.-Hrušák)

CH. There is a countable α_1 and absolutely Fréchet space which is not bisequential.

Theorem

• Is there (in ZFC) an α_3 -FU non-bisequential ad family?

Definition

- \mathcal{A} is completely separable if for every $X \in \mathcal{I}(\mathcal{A})^+$ there exists $A \in \mathcal{A}$ such that $A \subseteq X$.
- A is almost completely separable if for every X ⊆ ω such that X ∩ A is infinite for infinitely many A ∈ A, there exists B ∈ A such that B ⊆ X
- \mathcal{A} is weakly tight if for every family $\{X_n : n \in \omega\} \subseteq \mathcal{I}(\mathcal{A})^+$, there is $A \in \mathcal{A}$ such that $A \cap X_n$ is infinite for infinitely many $n \in \omega$.
- Is there (in ZFC) an almost weakly tight ad family?
- Does it follow from the existence of the above family, the existence of an α₃-FU non-bisequential ad_family?

• Is there (in ZFC) an α_3 -FU non-bisequential ad family?

Definition

- \mathcal{A} is completely separable if for every $X \in \mathcal{I}(\mathcal{A})^+$ there exists $A \in \mathcal{A}$ such that $A \subseteq X$.
- A is almost completely separable if for every X ⊆ ω such that X ∩ A is infinite for infinitely many A ∈ A, there exists B ∈ A such that B ⊆ X
- \mathcal{A} is weakly tight if for every family $\{X_n : n \in \omega\} \subseteq \mathcal{I}(\mathcal{A})^+$, there is $A \in \mathcal{A}$ such that $A \cap X_n$ is infinite for infinitely many $n \in \omega$.
- Is there (in ZFC) an almost weakly tight ad family?
- Does it follow from the existence of the above family, the existence of an α₃-FU non-bisequential ad family?

• Is there (in ZFC) an α_3 -FU non-bisequential ad family?

Definition

- \mathcal{A} is completely separable if for every $X \in \mathcal{I}(\mathcal{A})^+$ there exists $A \in \mathcal{A}$ such that $A \subseteq X$.
- A is almost completely separable if for every X ⊆ ω such that X ∩ A is infinite for infinitely many A ∈ A, there exists B ∈ A such that B ⊆ X
- \mathcal{A} is weakly tight if for every family $\{X_n : n \in \omega\} \subseteq \mathcal{I}(\mathcal{A})^+$, there is $A \in \mathcal{A}$ such that $A \cap X_n$ is infinite for infinitely many $n \in \omega$.
- Is there (in ZFC) an almost weakly tight ad family?
- Does it follow from the existence of the above family, the existence of an α₃-FU non-bisequential ad family?

• Is there (in ZFC) an α_3 -FU non-bisequential ad family?

Definition

- \mathcal{A} is completely separable if for every $X \in \mathcal{I}(\mathcal{A})^+$ there exists $A \in \mathcal{A}$ such that $A \subseteq X$.
- A is almost completely separable if for every X ⊆ ω such that X ∩ A is infinite for infinitely many A ∈ A, there exists B ∈ A such that B ⊆ X
- \mathcal{A} is weakly tight if for every family $\{X_n : n \in \omega\} \subseteq \mathcal{I}(\mathcal{A})^+$, there is $A \in \mathcal{A}$ such that $A \cap X_n$ is infinite for infinitely many $n \in \omega$.
- Is there (in ZFC) an almost weakly tight ad family?
- Does it follow from the existence of the above family, the existence of an α_3 -FU non-bisequential ad family?

Topological definitions	Bisequentiality and α_{3} in ad families	On some questions of Arhangel'skii
		000

Thank you for your attention!