# Fréchet-like properties and ad families 

# César Corral (joint with Michael Hrušák) 

UNAM-UMSNH
Hejnice, January 2020

## Fréchet, $\alpha_{i}$ and strong Fréchet properties

A point $x \in X$ is a Fréchet point if whenever $x \in \bar{A}$ there is a sequence $\left\{x_{n}: n \in \omega\right\} \subseteq A$ such that $x_{n} \rightarrow x$.

## Definition (Arhangel skii, 79)

A point $x \in X$ is an $\alpha_{i}$-point ( $i=1,2,3,4$ ) if given a family $\left\{S_{n}: n \in \omega\right\}$ of sequences converging to $x$, there is a sequence $S \rightarrow x$ (we identify a convergent sequence with its range) such that:
$\left(\alpha_{1}\right) S \backslash S_{n}$ is finite for all $n \in \omega$, $\left(\alpha_{2}\right) S \cap S_{n} \neq \emptyset$ for all $n \in \omega$,

$\left(\alpha_{4}\right) S \cap S_{n} \neq \emptyset$ for infinitely many $n \in \omega$.
Then a space $X$ is Fréchet (resp. $\alpha_{i}$ ) if every point $x \in X$ is Fréchet (resp. $\alpha_{i}$ )

## Fréchet, $\alpha_{i}$ and strong Fréchet properties

A point $x \in X$ is a Fréchet point if whenever $x \in \bar{A}$ there is a sequence $\left\{x_{n}: n \in \omega\right\} \subseteq A$ such that $x_{n} \rightarrow x$.

## Definition (Arhangel'skii, 79)

A point $x \in X$ is an $\alpha_{i}$-point ( $i=1,2,3,4$ ) if given a family $\left\{S_{n}: n \in \omega\right\}$ of sequences converging to $x$, there is a sequence $S \rightarrow x$ (we identify a convergent sequence with its range) such that:
$\left(\alpha_{1}\right) S \backslash S_{n}$ is finite for all $n \in \omega$,
$\left(\alpha_{2}\right) S \cap S_{n} \neq \emptyset$ for all $n \in \omega$,
$\left(\alpha_{3}\right)\left|S \cap S_{n}\right|=\omega$ for infinitely many $n \in \omega$,
$\left(\alpha_{4}\right) S \cap S_{n} \neq \emptyset$ for infinitely many $n \in \omega$.
Then a space $X$ is Fréchet (resp. $\alpha_{i}$ ) if every point $x \in X$ is Fréchet (resp. $\alpha_{i}$ )

## Fréchet, $\alpha_{i}$ and strong Fréchet properties

A point $x \in X$ is a Fréchet point if whenever $x \in \bar{A}$ there is a sequence $\left\{x_{n}: n \in \omega\right\} \subseteq A$ such that $x_{n} \rightarrow x$.

## Definition (Arhangel'skii, 79)

A point $x \in X$ is an $\alpha_{i}$-point ( $i=1,2,3,4$ ) if given a family $\left\{S_{n}: n \in \omega\right\}$ of sequences converging to $x$, there is a sequence $S \rightarrow x$ (we identify a convergent sequence with its range) such that:
$\left(\alpha_{1}\right) S \backslash S_{n}$ is finite for all $n \in \omega$,
$\left(\alpha_{2}\right) S \cap S_{n} \neq \emptyset$ for all $n \in \omega$,
$\left(\alpha_{3}\right)\left|S \cap S_{n}\right|=\omega$ for infinitely many $n \in \omega$,
$\left(\alpha_{4}\right) S \cap S_{n} \neq \emptyset$ for infinitely many $n \in \omega$.
Then a space $X$ is Fréchet (resp. $\alpha_{i}$ ) if every point $x \in X$ is Fréchet (resp. $\alpha_{i}$ ).

## Fréchet, $\alpha_{i}$ and strong Fréchet properties

Definition (Arhangel'skii, 79)
A space $X$ is absolutely Fréchet if in some Hausdorffcompactification $b X$ of $X$, every point $x \in X$ is a Fréchet point.
Given a family $\mathcal{A} \subseteq \mathcal{P}(X)$ we will say that $x \in \mathcal{A}(x$ clusters at $\mathcal{A})$if $x \in \bar{A}$ for every $A \in \mathcal{A}$. A filter base $\mathcal{G}$ converges to a point$x \in X$ if for every neighborhood $V$ of $x$, there is a $G \in \mathcal{G}$ such that$G \subseteq V$. We then write $\mathcal{G} \rightarrow x$.
Definition (E. Michael, 72)
$X$ is bisequential at $x \in X$ if for every ultrafilter $\mathcal{U}$ in $X$ such that
$x \in \overline{\mathcal{U}}$ there is a sequence $\mathcal{G}=\left\{G_{n}\right.$ ..... $n \in \omega\}$
A space $X$ is bisequential if it is bisequential at every point

## Fréchet, $\alpha_{i}$ and strong Fréchet properties

## Definition (Arhangel'skii, 79)

A space $X$ is absolutely Fréchet if in some Hausdorff compactification $b X$ of $X$, every point $x \in X$ is a Fréchet point.

Given a family $\mathcal{A} \subseteq \mathcal{P}(X)$ we will say that $x \in \overline{\mathcal{A}}$ ( $x$ clusters at $\mathcal{A}$ ) if $x \in \bar{A}$ for every $A \in \mathcal{A}$.
$x \in X$ if for every neighborhood $V$ of $x$, there is a $G \in \mathcal{G}$ such that
$G \subseteq V$. We then write $\mathcal{G} \rightarrow x$.

## Defintition (E. Michaet, 72 )

$X$ is bisequential at $x \in X$ if for every ultrafilter $\mathcal{U}$ in $X$ such that

## $x \in \overline{\mathcal{U}}$ there is a sequence $\mathcal{G}=\left\{G_{n}\right.$

A space $X$ is bisequential if it is bisequential at every point

## Fréchet, $\alpha_{i}$ and strong Fréchet properties

## Definition (Arhangel'skii, 79)

A space $X$ is absolutely Fréchet if in some Hausdorff compactification $b X$ of $X$, every point $x \in X$ is a Fréchet point.

Given a family $\mathcal{A} \subseteq \mathcal{P}(X)$ we will say that $x \in \overline{\mathcal{A}}$ ( $x$ clusters at $\mathcal{A}$ ) if $x \in \bar{A}$ for every $A \in \mathcal{A}$. A filter base $\mathcal{G}$ converges to a point $x \in X$ if for every neighborhood $V$ of $x$, there is a $G \in \mathcal{G}$ such that $G \subseteq V$. We then write $\mathcal{G} \rightarrow x$.

## Definition (E. Michael, 72)

$X$ is bisequential at $x \in X$ if for every ultrafilter $\mathcal{U}$ in $X$ such that
$x \in \overline{\mathcal{U}}$ there is a sequence $\mathcal{G}=\left\{G_{n}: n \in \omega\right\} \subseteq \mathcal{U}$ such that $\mathcal{G} \rightarrow x$
A space $X$ is bisequential if it is bisequential at every point.

## Fréchet, $\alpha_{i}$ and strong Fréchet properties

## Definition (Arhangel'skii, 79)

A space $X$ is absolutely Fréchet if in some Hausdorff compactification $b X$ of $X$, every point $x \in X$ is a Fréchet point.

Given a family $\mathcal{A} \subseteq \mathcal{P}(X)$ we will say that $x \in \overline{\mathcal{A}}$ ( $x$ clusters at $\mathcal{A}$ ) if $x \in \bar{A}$ for every $A \in \mathcal{A}$. A filter base $\mathcal{G}$ converges to a point $x \in X$ if for every neighborhood $V$ of $x$, there is a $G \in \mathcal{G}$ such that $G \subseteq V$. We then write $\mathcal{G} \rightarrow x$.

## Definition (E. Michael, 72)

$X$ is bisequential at $x \in X$ if for every ultrafilter $\mathcal{U}$ in $X$ such that $x \in \overline{\mathcal{U}}$ there is a sequence $\mathcal{G}=\left\{G_{n}: n \in \omega\right\} \subseteq \mathcal{U}$ such that $\mathcal{G} \rightarrow x$. A space $X$ is bisequential if it is bisequential at every point.

## Relationship between strong Fréchet and $\alpha_{1}$ properties



## Impact of these properties in the product of Fréchet spaces

- The product of a countably compact space with an $\alpha_{3}-\mathrm{FU}$ space is Fréchet.
- $X \times[0,1]$ is Fréchet iff $X$ is $\alpha_{4}-\mathrm{FU}$.
- If $X$ is absolutely Fréchet and $Y$ is first countable then $X \times Y$ is absolutely Fréchet.
- The product of an absolutely Fréchet and a bisequential space is absolutely Fréchet.


## Some results

- (Arhangel'skii, 79) There is a Fréchet space which is not $\alpha_{4}$.
- (Arhangel'skii, 79) There is a non-bisequential space $X$ such that it is $\alpha_{4}$-FU
- (Simon, 80) There is an $\alpha_{4}$ space which is not $\alpha_{3}$
- (Nyikos, 89) There is an $\alpha_{3}$ space which is not $\alpha_{2}$
- (Nyikos, 90's) There is an $\alpha_{2}$ space that is not first countable.
- (Dow, 90's) It is consistent that all countable $\alpha_{2}$ spaces are $\alpha_{1}$
- (Dow \& Steprans, 90's) It is consistent that all $\alpha_{1}$ spaces are first countable.


## Some results

- (Arhangel'skii, 79) There is a Fréchet space which is not $\alpha_{4}$.
- (Arhangel'skii, 79) There is a non-bisequential space $X$ such that it is $\alpha_{4}-\mathrm{FU}$.
- (Simon, 80) There is an $\alpha_{4}$ space which is not $\alpha_{3}$
- (Nyikos, 89) There is an $\alpha_{3}$ space which is not $\alpha_{2}$
- (Nyikos, 90's) There is an $\alpha_{2}$ snace that is not first countable
- (Dow, 90's) It is consistent that all countable $\alpha_{2}$ spaces are $\alpha_{1}$
- (Dow \& Steprans, 90's) It is consistent that all $\alpha_{1}$ spaces are first countable.


## Some results

- (Arhangel'skii, 79) There is a Fréchet space which is not $\alpha_{4}$.
- (Arhangel'skii, 79) There is a non-bisequential space $X$ such that it is $\alpha_{4}-\mathrm{FU}$.
- (Simon, 80) There is an $\alpha_{4}$ space which is not $\alpha_{3}$.
- (Nyikos, 89) There is an $\alpha_{3}$ space which is not $\alpha_{2}$.
- (Nyikos, 90's) There is an $\alpha_{2}$ space that is not first countable.
- (Dow, 90's) It is consistent that all countable $\alpha_{2}$ spaces are $\alpha_{1}$
- (Dow \& Steprans, 90's) It is consistent that all $\alpha_{1}$ spaces are first countable.


## Some results

- (Arhangel'skii, 79) There is a Fréchet space which is not $\alpha_{4}$.
- (Arhangel'skii, 79) There is a non-bisequential space $X$ such that it is $\alpha_{4}$-FU.
- (Simon, 80) There is an $\alpha_{4}$ space which is not $\alpha_{3}$.
- (Nyikos, 89) There is an $\alpha_{3}$ space which is not $\alpha_{2}$.
- (Nyikos, 90's) There is an $\alpha_{2}$ space that is not first countable.
- (Dow, 90's) It is consistent that all countable $\alpha_{2}$ spaces are $\alpha_{1}$
- (Dow \& Steprans, 90's) It is consistent that all $\alpha_{1}$ spaces are first countable.


## Some results

- (Arhangel'skii, 79) There is a Fréchet space which is not $\alpha_{4}$.
- (Arhangel'skii, 79) There is a non-bisequential space $X$ such that it is $\alpha_{4}$-FU.
- (Simon, 80) There is an $\alpha_{4}$ space which is not $\alpha_{3}$.
- (Nyikos, 89) There is an $\alpha_{3}$ space which is not $\alpha_{2}$.
- (Nyikos, 90 's) There is an $\alpha_{2}$ space that is not first countable.
- (Dow, 90's) It is consistent that all countable $\alpha_{2}$ spaces are $\alpha_{1}$
- (Dow \& Steprans, 90's) It is consistent that all $\alpha_{1}$ spaces are first countable.


## Some results

- (Arhangel'skii, 79) There is a Fréchet space which is not $\alpha_{4}$.
- (Arhangel'skii, 79) There is a non-bisequential space $X$ such that it is $\alpha_{4}-\mathrm{FU}$.
- (Simon, 80) There is an $\alpha_{4}$ space which is not $\alpha_{3}$.
- (Nyikos, 89) There is an $\alpha_{3}$ space which is not $\alpha_{2}$.
- (Nyikos, 90's) There is an $\alpha_{2}$ space that is not first countable.
- (Dow, 90's) It is consistent that all countable $\alpha_{2}$ spaces are $\alpha_{1}$.
- (Dow \& Steprans, 90's) It is consistent that all $\alpha_{1}$ spaces are first countable.


## Some results

- (Arhangel'skii, 79) There is a Fréchet space which is not $\alpha_{4}$.
- (Arhangel'skii, 79) There is a non-bisequential space $X$ such that it is $\alpha_{4}-\mathrm{FU}$.
- (Simon, 80) There is an $\alpha_{4}$ space which is not $\alpha_{3}$.
- (Nyikos, 89) There is an $\alpha_{3}$ space which is not $\alpha_{2}$.
- (Nyikos, 90's) There is an $\alpha_{2}$ space that is not first countable.
- (Dow, 90's) It is consistent that all countable $\alpha_{2}$ spaces are $\alpha_{1}$.
- (Dow \& Steprans, 90's) It is consistent that all $\alpha_{1}$ spaces are first countable.


## AD spaces

A family $\mathcal{A} \subseteq[\omega]^{\omega}$ is an almost disjoint (ad) family if $|A \cap B|<\omega$ for every $A, B \in \mathcal{A}$. $\mathcal{A}$ is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.
Given an ad family $\mathcal{A}$, the ad space generated by $\mathcal{A}$ is the subspace $\omega \cup\{\infty\}$ of the one-point compactification of $\Psi(\mathcal{A})$
We will say that an ad family $\mathcal{A}$ satisfies a topological property $P$ if its ad space does.

## Definition

An ad family $\mathcal{A}$ is hereditarily $\alpha_{3}$ if $\mathcal{B}$ is $\alpha_{3}$ for every $\mathcal{B} \subseteq \mathcal{A}$.

## Question (Gruenhage, 06)

For an ad family $\mathcal{A}$ is it equivalent being $\alpha_{3}-\mathrm{FU}$ (hereditarily $\left.\alpha_{3}-\mathrm{FU}\right)$ with its bisequentiality?

## AD spaces

A family $\mathcal{A} \subseteq[\omega]^{\omega}$ is an almost disjoint (ad) family if $|A \cap B|<\omega$ for every $A, B \in \mathcal{A}$. $\mathcal{A}$ is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.

```
Given an ad family }\mathcal{A}\mathrm{ , the ad space generated by }\mathcal{A}\mathrm{ is the subspace
\omega \cup \{ \infty \} \text { of the one-point compactification of } \Psi ( \mathcal { A } )
We will say that an ad family }\mathcal{A}\mathrm{ satisfies a topological property }P\mathrm{ if
its ad space does
```


## Definition

$\square$

Question (Gruenhage, 06)
For an ad family $A$ is it equivalent being $a_{3}-$ FU (hereditarily $\alpha_{3}-$ FU $)$ with its bisequentiality?

## AD spaces

A family $\mathcal{A} \subseteq[\omega]^{\omega}$ is an almost disjoint (ad) family if $|A \cap B|<\omega$ for every $A, B \in \mathcal{A}$. $\mathcal{A}$ is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.
Given an ad family $\mathcal{A}$, the ad space generated by $\mathcal{A}$ is the subspace $\omega \cup\{\infty\}$ of the one-point compactification of $\Psi(\mathcal{A})$.
We will say that an ad family $\mathcal{A}$ satisfies a topological property $P$ if its ad space does.

Defintition
An ad family $\mathcal{A}$ is hereditarily $\alpha_{3}$ if $\mathcal{B}$ is $\alpha_{3}$ for every $\mathcal{B} \subseteq \mathcal{A}$
Question (Gruenhage, 06)
For an ad family $\mathcal{A}$ is it equivalent being $\alpha_{3}-F U$ (hereditarily
$\left.\alpha_{3}-F U\right)$ with its bisequentiality?

## AD spaces

A family $\mathcal{A} \subseteq[\omega]^{\omega}$ is an almost disjoint (ad) family if $|A \cap B|<\omega$ for every $A, B \in \mathcal{A}$. $\mathcal{A}$ is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.
Given an ad family $\mathcal{A}$, the ad space generated by $\mathcal{A}$ is the subspace $\omega \cup\{\infty\}$ of the one-point compactification of $\Psi(\mathcal{A})$.
We will say that an ad family $\mathcal{A}$ satisfies a topological property $P$ if its ad space does.

Question (Gruenhage, 06)
For an ad family $\mathcal{A}$ is it equivalent being $\alpha_{3}-F U$ (hereditarily
$\left.\alpha_{3}-\mathrm{FU}\right)$ with its bisequentiality?

## AD spaces

A family $\mathcal{A} \subseteq[\omega]^{\omega}$ is an almost disjoint (ad) family if $|A \cap B|<\omega$ for every $A, B \in \mathcal{A}$. $\mathcal{A}$ is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.
Given an ad family $\mathcal{A}$, the ad space generated by $\mathcal{A}$ is the subspace $\omega \cup\{\infty\}$ of the one-point compactification of $\Psi(\mathcal{A})$.
We will say that an ad family $\mathcal{A}$ satisfies a topological property $P$ if its ad space does.

## Definition

An ad family $\mathcal{A}$ is hereditarily $\alpha_{3}$ if $\mathcal{B}$ is $\alpha_{3}$ for every $\mathcal{B} \subseteq \mathcal{A}$.
$\square$
For an ad family $\mathcal{A}$ is it equivalent being $\alpha_{3}-\mathrm{FU}$ (hereditarily $\left.\alpha_{3}-\mathrm{FU}\right)$ with its bisequentiality?

## AD spaces

A family $\mathcal{A} \subseteq[\omega]^{\omega}$ is an almost disjoint (ad) family if $|A \cap B|<\omega$ for every $A, B \in \mathcal{A}$. $\mathcal{A}$ is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.
Given an ad family $\mathcal{A}$, the ad space generated by $\mathcal{A}$ is the subspace $\omega \cup\{\infty\}$ of the one-point compactification of $\Psi(\mathcal{A})$.
We will say that an ad family $\mathcal{A}$ satisfies a topological property $P$ if its ad space does.

## Definition

An ad family $\mathcal{A}$ is hereditarily $\alpha_{3}$ if $\mathcal{B}$ is $\alpha_{3}$ for every $\mathcal{B} \subseteq \mathcal{A}$.

## Question (Gruenhage, 06)

For an ad family $\mathcal{A}$ is it equivalent being $\alpha_{3}-\mathrm{FU}$ (hereditarily $\alpha_{3}-\mathrm{FU}$ ) with its bisequentiality?

## Some results

- (Folklore) There are bisequential ad families (actually, every $\mathbb{R}$-embedable is bisequential).
- (Nyikos, 09) Under $\mathfrak{b}=\mathfrak{c}$, there is a Fréchet ad family which is not $\alpha_{3}$. The example consists of graph of functions on $\omega \times \omega$, so.


## Question (Nyikos, 09)

## Is there a non-bisequential ad family consisting of functions such

 that it is $\alpha_{3}$-FU?
## Theorem (C.-Hrušăk) <br> $\operatorname{non}(\mathcal{M})=\boldsymbol{c}$. There exists an $\alpha_{3}-F U\left(\right.$ even $\left.\alpha_{2}-F U\right)$ ad family <br> (consisting of functions in $\omega \times \omega$ ) which is not hereditarily $\alpha_{3}$

## Some results

- (Folklore) There are bisequential ad families (actually, every $\mathbb{R}$-embedable is bisequential).
- (Nyikos, 09) Under $\mathfrak{b}=\mathfrak{c}$, there is a Fréchet ad family which is not $\alpha_{3}$. The example consists of graph of functions on $\omega \times \omega$, so...


## Question (Nyikos, 09)

Is there a non-bisequential ad family consisting of functions such that it is $\alpha_{3}$ - FU ?


## Some results

- (Folklore) There are bisequential ad families (actually, every $\mathbb{R}$-embedable is bisequential).
- (Nyikos, 09) Under $\mathfrak{b}=\mathfrak{c}$, there is a Fréchet ad family which is not $\alpha_{3}$. The example consists of graph of functions on $\omega \times \omega$, so...


## Question (Nyikos, 09)

Is there a non-bisequential ad family consisting of functions such that it is $\alpha_{3}-\mathrm{FU}$ ?

$\operatorname{non}(\mathcal{M})=\mathfrak{c}$. There exists an $\alpha_{3}$-FU (even $\alpha_{2}-\mathrm{FU}$ ) ad family (consisting of functions in $\omega \times \omega$ ) which is not hereditarily $\alpha_{3}$.

## Some results

- (Folklore) There are bisequential ad families (actually, every $\mathbb{R}$-embedable is bisequential).
- (Nyikos, 09) Under $\mathfrak{b}=\mathfrak{c}$, there is a Fréchet ad family which is not $\alpha_{3}$. The example consists of graph of functions on $\omega \times \omega$, SO...


## Question (Nyikos, 09)

Is there a non-bisequential ad family consisting of functions such that it is $\alpha_{3}$ - FU ?

## Theorem (C.-Hrušák)

$\operatorname{non}(\mathcal{M})=\mathfrak{c}$. There exists an $\alpha_{3}-\mathrm{FU}$ (even $\alpha_{2}-\mathrm{FU}$ ) ad family (consisting of functions in $\omega \times \omega$ ) which is not hereditarily $\alpha_{3}$.

## Theorem (C.-Hrušák)

$\mathfrak{b}=\mathfrak{c}$. There exists an hereditarily $\alpha_{3}$-FU almost disjoint family (consisting of partial functions) which is not bisequential.

## Question

Can the above family consist of total functions?
Since $\mathfrak{b} \leq \operatorname{non}(\mathcal{M})$, it follows that under $\mathfrak{b}=\mathfrak{c}$ the tree concepts
are different.

## Theorem (C.-Hrušak)

$\mathfrak{b}=\mathfrak{c}$. There exists an hereditarily $\alpha_{3}$-FU almost disjoint family (consisting of partial functions) which is not bisequential.

## Question

Can the above family consist of total functions?
Since $\mathfrak{b} \leq \operatorname{non}(\mathcal{M})$, it follows that under $\mathfrak{b}=\mathfrak{c}$ the tree concepts are different.

## Theorem (C.-Hrušák)

$\mathfrak{b}=\mathfrak{c}$. There exists an hereditarily $\alpha_{3}$-FU almost disjoint family (consisting of partial functions) which is not bisequential.

## Question

Can the above family consist of total functions?
Since $\mathfrak{b} \leq \operatorname{non}(\mathcal{M})$, it follows that under $\mathfrak{b}=\mathfrak{c}$ the tree concepts are different.

## Other constructions

## Theorem (C.-Hrušák) <br> $(\mathfrak{s} \leq \mathfrak{b})$ There is an $\alpha_{3}$ - FU not hereditarily $\alpha_{3}$ ad family.

## Corollary

$\left(\mathfrak{c} \leq \aleph_{2}\right)$ There is an $\alpha_{3}-\mathrm{FU}$ non-bisequential ad family.

## Theorem (C.-Hrušák)

$\square$ - $\diamond(\mathfrak{b}) \Rightarrow$ There is an her. $\alpha_{3}$-FU not bsq. ad family of size $\omega_{1}$

## Other constructions

## Theorem (C.-Hrušák)

$(\mathfrak{s} \leq \mathfrak{b})$ There is an $\alpha_{3}$-FU not hereditarily $\alpha_{3}$ ad family.
Corollary
$\left(\mathfrak{c} \leq \aleph_{2}\right)$ There is an $\alpha_{3}-\mathrm{FU}$ non-bisequential ad family.

## Theorem (C.-Hrusakk)

- $\diamond(\mathfrak{b}) \Rightarrow$ There is an $\alpha_{2}-F U$ not her. $\alpha_{3}$ ad family of size $\omega_{1}$
$\theta(6) \Rightarrow$ There is an her a $a_{3}$ FU not bsq. ad family of size $\omega$.


## Other constructions

## Theorem (C.-Hrušák)

$(\mathfrak{s} \leq \mathfrak{b})$ There is an $\alpha_{3}$-FU not hereditarily $\alpha_{3}$ ad family.

Corollary
$\left(\mathfrak{c} \leq \aleph_{2}\right)$ There is an $\alpha_{3}$ - FU non-bisequential ad family.

## Theorem (C.-Hrušák)

- $\diamond(\mathfrak{b}) \Rightarrow$ There is an $\alpha_{2}$-FU not her. $\alpha_{3}$ ad family of size $\omega_{1}$.
- $\diamond(\mathfrak{b}) \Rightarrow$ There is an her. $\alpha_{3}$-FU not bsq. ad family of size $\omega_{1}$.


## On some questions of Arhangel'skii

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) $\alpha_{1}$-FU space which is not bisequential?
A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_{0}}<2^{\aleph_{1}}$


## Theorem (C.-Hrušák) <br> CH . There is a countable $\alpha_{1}$ and absolutely Fréchet space which is not bisequential.

## Theorem

There is (in ZFC) an absolutely Frechet space which is not bisequential.

## On some questions of Arhangel'skii

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) $\alpha_{1}-\mathrm{FU}$ space which is not bisequential?
A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_{0}}<2^{\aleph_{1}}$.


## Theorem (C Hručak) <br> CH . There is a countable $\alpha_{1}$ and absolutely Fréchet space which is not bisequential.

Theorem
There is (in ZFC) an absolutely Fréchet space which is not
bisequential.

## On some questions of Arhangel'skii

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) $\alpha_{1}-\mathrm{FU}$ space which is not bisequential?
A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_{0}}<2^{\aleph_{1}}$.


Theorem
There is (in ZFC) an absolutely Frechet space which is not bisequential

## On some questions of Arhangel'skii

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) $\alpha_{1}-\mathrm{FU}$ space which is not bisequential?
A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_{0}}<2^{\aleph_{1}}$.


## Theorem (C.-Hrušák)

CH . There is a countable $\alpha_{1}$ and absolutely Fréchet space which is not bisequential.


## On some questions of Arhangel'skii

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) $\alpha_{1}$-FU space which is not bisequential?
A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_{0}}<2^{\aleph_{1}}$.


## Theorem (C.-Hrušák)

CH . There is a countable $\alpha_{1}$ and absolutely Fréchet space which is not bisequential.

## Theorem

There is (in ZFC) an absolutely Fréchet space which is not bisequential.

## Some questions (if time allows)

- Is there (in ZFC) an $\alpha_{3}$-FU non-bisequential ad family?


## Definition

Let $\mathcal{A}$ be an ad family:

- $\mathcal{A}$ is completely separable if for every $X \in \mathcal{I}(\mathcal{A})^{+}$there exists $A \in \mathcal{A}$ such that $A \subseteq X$.
- $\mathcal{A}$ is almost completely separable if for every $X \subseteq \omega$ such that $X \cap A$ is infinite for infinitely many $A \in \mathcal{A}$, there exists $B \in \mathcal{A}$ such that $B \subseteq X$
- $\mathcal{A}$ is weakly tight if for every family $\left\{X_{n}: n \in \omega\right\} \subseteq \mathcal{I}(\mathcal{A})^{+}$, there is $A \in \mathcal{A}$ such that $A \cap X_{n}$ is infinite for infinitely many $n \in \omega$
- Is there (in ZFC) an almost weakly tight ad family?
- Does it follow from the existence of the above family, the existence of an $\alpha_{3}$-FU non-bisequential ad_family ? $\bar{\equiv}$, $\bar{\equiv}$, $\bar{\equiv}$


## Some questions (if time allows)

- Is there (in ZFC) an $\alpha_{3}-\mathrm{FU}$ non-bisequential ad family?


## Definition

Let $\mathcal{A}$ be an ad family:

- $\mathcal{A}$ is completely separable if for every $X \in \mathcal{I}(\mathcal{A})^{+}$there exists $A \in \mathcal{A}$ such that $A \subseteq X$.
- $\mathcal{A}$ is almost completely separable if for every $X \subseteq \omega$ such that $X \cap A$ is infinite for infinitely many $A \in \mathcal{A}$, there exists $B \in \mathcal{A}$ such that $B \subseteq X$
- $\mathcal{A}$ is weakly tight if for every family $\left\{X_{n}: n \in \omega\right\} \subseteq \mathcal{I}(\mathcal{A})^{+}$, there is $A \in \mathcal{A}$ such that $A \cap X_{n}$ is infinite for infinitely many $n \in \omega$.
- Is there (in ZFC) an almost weakly tight ad family?
- Does it follow from the existence of the above family, the existence of an $\alpha_{3}-\mathrm{FU}$ non-bisequential


## Some questions (if time allows)

- Is there (in ZFC) an $\alpha_{3}-\mathrm{FU}$ non-bisequential ad family?


## Definition

Let $\mathcal{A}$ be an ad family:

- $\mathcal{A}$ is completely separable if for every $X \in \mathcal{I}(\mathcal{A})^{+}$there exists $A \in \mathcal{A}$ such that $A \subseteq X$.
- $\mathcal{A}$ is almost completely separable if for every $X \subseteq \omega$ such that $X \cap A$ is infinite for infinitely many $A \in \mathcal{A}$, there exists $B \in \mathcal{A}$ such that $B \subseteq X$
- $\mathcal{A}$ is weakly tight if for every family $\left\{X_{n}: n \in \omega\right\} \subseteq \mathcal{I}(\mathcal{A})^{+}$, there is $A \in \mathcal{A}$ such that $A \cap X_{n}$ is infinite for infinitely many $n \in \omega$.
- Is there (in ZFC) an almost weakly tight ad family?
- Does it follow from the existence of the above family, the existence of an $\alpha_{3}-$ FU non-bisequential adofamidx?


## Some questions (if time allows)

- Is there (in ZFC) an $\alpha_{3}$-FU non-bisequential ad family?


## Definition

Let $\mathcal{A}$ be an ad family:

- $\mathcal{A}$ is completely separable if for every $X \in \mathcal{I}(\mathcal{A})^{+}$there exists $A \in \mathcal{A}$ such that $A \subseteq X$.
- $\mathcal{A}$ is almost completely separable if for every $X \subseteq \omega$ such that $X \cap A$ is infinite for infinitely many $A \in \mathcal{A}$, there exists $B \in \mathcal{A}$ such that $B \subseteq X$
- $\mathcal{A}$ is weakly tight if for every family $\left\{X_{n}: n \in \omega\right\} \subseteq \mathcal{I}(\mathcal{A})^{+}$, there is $A \in \mathcal{A}$ such that $A \cap X_{n}$ is infinite for infinitely many $n \in \omega$.
- Is there (in ZFC) an almost weakly tight ad family?
- Does it follow from the existence of the above family, the existence of an $\alpha_{3}-\mathrm{FU}$ non-bisequential ad family?

Thank you for your attention!

